Finding the slowest SQL execution of the same query

August 28th, 2013


When running the same query multiple times, several questions come to mind:

  • Does the query always execute in the same amount of  time?
  • If some executions are slower, what is the slowest execution time?
  • When did the slowest exectution happen?
  • What more can I find out about the slowest exectution?

All of this can be answered from data in Active Session History or ASH.   The following query finds the maximum, minimum and average execution times in seconds as well as the time of the slowest execution which is given by start time and end time of the  slowest exectuiton:

col av for 9999999
col mx for 9999999
col mn for 9999999

select
   sql_id,
   count(*),
   round(min(delta),0) mn,
   round(avg(delta),0) av,
   round(max(delta),0) mx,
   substr(max(times),12) max_run_time
from (
   select
        sql_id,
        sql_exec_id,
        max(delta) delta ,
        -- lpad sets a fixed width on delta so it can be
        -- stripped off above with substr
        -- delta in "times" is just for sorting not displaying
        lpad(round(max(delta),0),10) || ' ' ||
        to_char(min(start_time),'YY-MM-DD HH24:MI:SS')  || ' ' ||
        to_char(max(end_time),'YY-MM-DD HH24:MI:SS')  times
   from ( select
                                            sql_id,
                                            sql_exec_id,
              cast(sample_time as date)     end_time,
              cast(sql_exec_start as date)  start_time,
              ((cast(sample_time    as date)) -
               (cast(sql_exec_start as date))) * (3600*24) delta

           from
              dba_hist_active_sess_history
           where sql_exec_id is not null
        )
   group by sql_id,sql_exec_id

)
group by sql_id
having count(*) > 10
order by mx
/

SQL_ID          COUNT(*)       MN       AV       MX MAX_RUN_TIME
------------- ---------- -------- -------- -------- -----------------------------------
155vjqzjqp58f         27        0      115      786 11-04-11 07:39:47 11-04-11 07:41:20
7nf5917x3tq5x        113        0      129      791 11-04-11 01:03:19 11-03-02 04:16:09
asg774pz0kqga         11       11      225      799 11-04-14 12:20:10 11-03-02 12:18:58
1kf1jsykb1nk6        529        0      107      800 11-04-09 18:41:28 11-03-01 23:13:56
8rua4c9agcqkb        978        0       73      820 11-03-01 23:13:50 11-03-01 23:13:56
fdagtr1sdk8tn        313        0      242      841 11-04-08 21:30:31 11-04-08 21:30:38
7b5w34atn8q1h        124        0       25      898 11-03-07 20:53:17 11-03-07 20:53:23
9w7mbuv734tfy         11       30      509      954 11-04-14 09:00:55 11-03-02 04:27:33
88qxmg220db9s         23        4      357     1040 11-04-13 22:08:20 11-04-13 02:20:09
83ngzw213v0cs        302        1      207     1122 11-04-11 16:26:32 11-03-07 16:12:11
34cgtc9xkgxny         61      978     1163     1272 11-03-02 10:06:24 11-03-02 10:06:30
g5u58zpg0tuk8         97        1       62     1359 11-04-13 02:49:33 11-04-12 02:23:39
6tkqndn1tzf23         29        7      187     1370 11-04-13 06:56:43 11-03-02 06:56:54
g4wrnvdmf23b1         11       19      458     1397 11-04-14 12:22:28 11-03-02 12:21:19
bpkg6y9wvf717         31        0      189     1427 11-04-13 21:19:51 11-03-02 21:08:00
4d6m2q3ngjcv9        320        3      485     1701 11-04-10 18:00:54 11-03-01 23:10:55
882tp5sbq1tq5         17       39      367     1795 11-04-14 14:00:30 11-03-01 23:04:33
5k7vccwjr5ahd       2653        0       33     1963 11-04-12 09:06:08 11-03-01 23:10:15
44034jty9vnrg         19        2      188     1968 11-03-03 09:17:34 11-03-03 09:17:43
g9n69a23s3wxz         40        6      280     2009 11-04-08 13:47:23 11-03-03 09:37:38
ds8cz0fb8w147        161       13      274     2531 11-04-12 16:10:21 11-03-01 23:11:55
bzyny95313u12        114        0       47     2599 11-03-03 03:06:18 11-03-03 03:06:25
0fvrpk7476b7y         26        0      133     3068 11-03-07 07:57:56 11-03-07 07:58:00
1pjp66rxcj6tg         15       57      768     3106 11-04-09 17:25:21 11-03-07 08:58:26
8r5wuxk1dprhr         39       24      841     3510 11-04-14 14:00:47 11-03-02 09:54:37
0w5uu5kngyyty         21        0      442     3652 11-04-11 08:00:21 11-04-11 09:01:13
0hbv80w9ypy0n        161        0     1184     4089 11-04-12 22:26:09 11-03-02 04:36:15
71fwb4n6a92fv         49       30      677     4481 11-04-10 17:01:17 11-03-01 23:40:45
0bujgc94rg3fj        604        0       25     4929 11-04-08 10:53:34 11-04-08 12:15:43
64dqhdkkw63fd       1083        0        7     7147 11-03-07 04:01:01 11-03-07 06:00:08
990m08w8xav7s        591        0       52     7681 11-04-13 00:39:27 11-04-13 00:39:37
2n5369dsuvn5a         16      303     5727    10472 11-04-14 11:18:11 11-04-14 14:12:43
2spgk3k0f7quz        251        0      546    29607 11-04-12 12:11:47 11-04-12 12:11:48
36pd759xym9tc         12     1391    23862    37934 11-04-13 19:25:49 11-03-01 23:00:12
497wh6n7hu14f         49        0     5498    69438 11-04-12 19:01:17 11-04-13 12:03:54

We can add a histogram of execution spread to the query

col 1 for 99999
col 2 for 99999
col 3 for 9999
col 4 for 999
col 5 for 99
col av for 99999.9
col ct for 99999
col mn for 999
col av for 99999.9

with pivot_data as (
select
      sql_id,
      ct,
      mxdelta mx,
      mndelta mn,
      avdelta av,
      -- high_boundary is set to maxdelta + 1 so that
      -- nothing ends up in the overflow bucket
      -- otherwise the max value ends up in the overflow bucket
      width_bucket(delta,mndelta,mxdelta+1,5) as bucket  ,
      substr(times,12) max_run_time
from (
select
   sql_id,
   delta,
   count(*) OVER (PARTITION BY sql_id) ct,
   max(delta) OVER (PARTITION BY sql_id) mxdelta,
   min(delta) OVER (PARTITION BY sql_id) mndelta,
   avg(delta) OVER (PARTITION BY sql_id) avdelta,
   max(times) OVER (PARTITION BY sql_id) times
from (
   select
        sql_id,
        sql_exec_id,
        max(delta) delta ,
        -- lpad sets a fixed width on delta so it can be
        -- stripped off above with substr
        -- delta in "times" is just for sorting not displaying
        lpad(round(max(delta),0),10) || ' ' ||
        to_char(min(start_time),'YY-MM-DD HH24:MI:SS')  || ' ' ||
        to_char(max(end_time),'YY-MM-DD HH24:MI:SS')  times
   from ( select
                                            sql_id,
                                            sql_exec_id,
              cast(sample_time as date)     end_time,
              cast(sql_exec_start as date)  start_time,
              ((cast(sample_time    as date)) -
               (cast(sql_exec_start as date))) * (3600*24) delta
           from
              dba_hist_active_sess_history
           where sql_exec_id is not null
        )
   group by sql_id,sql_exec_id
)
)
where ct > &min_repeat_executions_filter
)
select * from pivot_data
PIVOT ( count(*) FOR bucket IN (1,2,3,4,5))
order by mx,av;
/
SQL_ID            CT         MX   MN       AV MAX_RUN_TIME                             1      2     3    4   5
------------- ------ ---------- ---- -------- ----------------------------------- ------ ------ ----- ---- ---
8rua4c9agcqkb    978        820    0     72.7 11-03-01 23:13:50 11-03-01 23:13:56    830    116    21    9   2
fdagtr1sdk8tn    313        841    0    241.8 11-04-08 21:30:31 11-04-08 21:30:38    194     45     0    0  74
7b5w34atn8q1h    124        898    0     24.8 11-03-07 20:53:17 11-03-07 20:53:23    122      0     0    0   2
83ngzw213v0cs    302       1122    1    207.5 11-04-11 16:26:32 11-03-07 16:12:11    200     68    21    6   7
g5u58zpg0tuk8     97       1359    1     62.1 11-04-13 02:49:33 11-04-12 02:23:39     92      3     1    0   1
4d6m2q3ngjcv9    320       1701    3    484.7 11-04-10 18:00:54 11-03-01 23:10:55     92    168    50    9   1
5k7vccwjr5ahd   2653       1963    0     33.4 11-04-12 09:06:08 11-03-01 23:10:15   2623     15     8    4   3
ds8cz0fb8w147    161       2531   13    273.8 11-04-12 16:10:21 11-03-01 23:11:55    136     18     5    1   1
bzyny95313u12    114       2599    0     46.5 11-03-03 03:06:18 11-03-03 03:06:25    113      0     0    0   1
0hbv80w9ypy0n    161       4089    0   1183.9 11-04-12 22:26:09 11-03-02 04:36:15     27    116     9    6   3
71fwb4n6a92fv     49       4481   30    676.9 11-04-10 17:01:17 11-03-01 23:40:45     38      6     2    2   1
0bujgc94rg3fj    604       4929    0     24.7 11-04-08 10:53:34 11-04-08 12:15:43    601      1     1    0   1
64dqhdkkw63fd   1083       7147    0      7.2 11-03-07 04:01:01 11-03-07 06:00:08   1082      0     0    0   1
990m08w8xav7s    591       7681    0     51.8 11-04-13 00:39:27 11-04-13 00:39:37    587      0     0    2   2
2spgk3k0f7quz    251      29607    0    546.1 11-04-12 12:11:47 11-04-12 12:11:48    247      2     0    0   2
497wh6n7hu14f     49      69438    0   5498.2 11-04-12 19:01:17 11-04-13 12:03:54     44      1     0    1   3

Finally add the SQL_EXEC_ID of the longest running execution. This SQL_EXEC_ID can then be used to go look at the events in ASH for that particular execution

col 1 for 99999
col 2 for 99999
col 3 for 9999
col 4 for 999
col 5 for 99
col av for 99999
col ct for 99999
col mn for 999
col av for 99999.9
col longest_sql_exec_id for A10

WITH pivot_data AS (
SELECT
      sql_id,
      ct,
      mxdelta mx,
      mndelta mn,
      round(avdelta) av,
      WIDTH_BUCKET(delta_in_seconds,mndelta,mxdelta+.1,5) AS bucket  ,
      SUBSTR(times,12) max_run_time,
      SUBSTR(longest_sql_exec_id, 12) longest_sql_exec_id
FROM (
SELECT
   sql_id,
   delta_in_seconds,
   COUNT(*) OVER (PARTITION BY sql_id) ct,
   MAX(delta_in_seconds) OVER (PARTITION BY sql_id) mxdelta,
   MIN(delta_in_seconds) OVER (PARTITION BY sql_id) mndelta,
   AVG(delta_in_seconds) OVER (PARTITION BY sql_id) avdelta,
   MAX(times) OVER (PARTITION BY sql_id) times,
   MAX(longest_sql_exec_id) OVER (PARTITION BY sql_id) longest_sql_exec_id
FROM (
   SELECT
        sql_id,
        sql_exec_id,
        MAX(delta_in_seconds) delta_in_seconds ,
        LPAD(ROUND(MAX(delta_in_seconds),0),10) || ' ' ||
        TO_CHAR(MIN(start_time),'YY-MM-DD HH24:MI:SS')  || ' ' ||
        TO_CHAR(MAX(end_time),'YY-MM-DD HH24:MI:SS')  times,
        LPAD(ROUND(MAX(delta_in_seconds),0),10) || ' ' ||
        TO_CHAR(MAX(sql_exec_id)) longest_sql_exec_id
   FROM ( SELECT
                                            sql_id,
                                            sql_exec_id,
              CAST(sample_time AS DATE)     end_time,
              CAST(sql_exec_start AS DATE)  start_time,
              ((CAST(sample_time    AS DATE)) -
               (CAST(sql_exec_start AS DATE))) * (3600*24) delta_in_seconds
           FROM
              dba_hist_active_sess_history
           WHERE sql_exec_id IS NOT NULL
        )
   GROUP BY sql_id,sql_exec_id
)
)
where ct > &min_repeat_executions_filter
 and  mxdelta > &min_elapsed_time
)
SELECT * FROM pivot_data
PIVOT ( COUNT(*) FOR bucket IN (1,2,3,4,5))
ORDER BY mx DESC,av DESC
;

SQL_ID            CT         MX   MN       AV MAX_RUN_TIME                        LONGEST_SQ      1      2     3    4   5
------------- ------ ---------- ---- -------- ----------------------------------- ---------- ------ ------ ----- ---- ---
2spgk3k0f7quz    251      29607    0    546.0 11-04-12 12:11:47 11-04-12 20:25:14 16781748      247      2     0    0   2
990m08w8xav7s    591       7681    0     52.0 11-04-13 00:39:27 11-04-13 02:47:28 16786685      587      0     0    2   2
64dqhdkkw63fd   1083       7147    0      7.0 11-03-07 04:01:01 11-03-07 06:00:08 16777218     1082      0     0    0   1
0bujgc94rg3fj    604       4929    0     25.0 11-04-08 10:53:34 11-04-08 12:15:43 16814628      601      1     1    0   1
0hbv80w9ypy0n    161       4089    0   1184.0 11-03-02 04:36:10 11-04-12 23:34:18 16777290       27    116     9    6   3
bzyny95313u12    114       2599    0     47.0 11-03-03 03:06:18 11-03-03 03:49:37 16781191      113      0     0    0   1
ds8cz0fb8w147    161       2531   13    274.0 11-03-01 23:11:48 11-04-12 16:10:37 16777285      136     18     5    1   1
5k7vccwjr5ahd   2653       1963    0     33.0 11-03-01 23:10:12 11-04-12 09:06:12 16778244     2623     15     8    4   3
4d6m2q3ngjcv9    320       1701    3    485.0 11-03-01 23:10:53 11-04-10 18:01:26 16777261       92    168    50    9   1
g5u58zpg0tuk8     97       1359    1     62.0 11-04-12 02:23:37 11-04-13 02:51:09 16777217       92      3     1    0   1
34cgtc9xkgxny     61       1272  978   1163.0 11-03-02 10:06:24 11-03-02 10:27:36 16777250        4      4    14   30   9
09-02-05-623_950x510


Oracle, performance, sql

  1. Trackbacks

  2. No trackbacks yet.
  1. Comments

  2. Vishal Desai
    | #1

    Hi Kyle,

    Below is the output from one of my database:

    SQL_ID CT MX MN AV MAX_RUN_TIME LONGEST_SQ 1 2 3 4 5
    ————- —— ———- —- ——– ———————————– ———- —— —— —– —- —
    2ahhqkpm9ywfc 3 6010 430 2438.0 13-03-15 02:50:53 13-09-11 18:07:18 16777216 2 0 0 0 1

    Query did not ran for 6 months. SQL_EXEC_ID is not always unique (http://blog.tanelpoder.com/2011/10/24/what-the-heck-is-the-sql-execution-id-sql_exec_id/ Please see Coskan and Tanel comments). In my case, I have only 3 distinct SQL_EXEC_ID for 180 executions.

    Thanks,
    Vishal

  3. khailey
    | #2

    Thanks for the link to Tanel’s stuff. From what Tanel is saying the SQL_EXEC_ID will repeat across database bounces and across wraps of the counter. Nothing suprising there.
    It looked like Coskan was saying there were bugs but I didn’t see any confirmation of that – maybe I skimmed the article too fast.
    Does make me wonder if it’s worth adding in SQL_START_ID to the above query in your case and seeing if it helps.
    like this

    col 1 for 99999
    col 2 for 99999
    col 3 for 9999
    col 4 for 999
    col 5 for 99
    col av for 99999
    col ct for 99999
    col mn for 999
    col av for 99999.9
    col MAX_RUN_TIME for a32
    col longest_sql_exec_id for A20

    WITH pivot_data AS (
    SELECT
    sql_id,
    ct,
    mxdelta mx,
    mndelta mn,
    round(avdelta) av,
    WIDTH_BUCKET(delta_in_seconds,mndelta,mxdelta+.1,5) AS bucket ,
    SUBSTR(times,12) max_run_time,
    SUBSTR(longest_sql_exec_id, 12) longest_sql_exec_id
    FROM (
    SELECT
    sql_id,
    delta_in_seconds,
    COUNT(*) OVER (PARTITION BY sql_id) ct,
    MAX(delta_in_seconds) OVER (PARTITION BY sql_id) mxdelta,
    MIN(delta_in_seconds) OVER (PARTITION BY sql_id) mndelta,
    AVG(delta_in_seconds) OVER (PARTITION BY sql_id) avdelta,
    MAX(times) OVER (PARTITION BY sql_id) times,
    MAX(longest_sql_exec_id) OVER (PARTITION BY sql_id) longest_sql_exec_id
    FROM (
    SELECT
    sql_id,
    sql_exec_id,
    MAX(delta_in_seconds) delta_in_seconds ,
    LPAD(ROUND(MAX(delta_in_seconds),0),10) || ‘ ‘ ||
    TO_CHAR(MIN(start_time),’YY-MM-DD HH24:MI:SS’) || ‘ ‘ ||
    TO_CHAR(MAX(end_time),’YY-MM-DD HH24:MI:SS’) times,
    LPAD(ROUND(MAX(delta_in_seconds),0),10) || ‘ ‘ ||
    TO_CHAR(MAX(sql_exec_id)) longest_sql_exec_id
    FROM ( SELECT
    sql_id,
    to_char(sql_exec_id)||’_’||to_char(sql_exec_start,’J’) sql_exec_id,
    CAST(sample_time AS DATE) end_time,
    CAST(sql_exec_start AS DATE) start_time,
    ((CAST(sample_time AS DATE)) -
    (CAST(sql_exec_start AS DATE))) * (3600*24) delta_in_seconds
    FROM
    dba_hist_active_sess_history
    WHERE sql_exec_id IS NOT NULL
    )
    GROUP BY sql_id,sql_exec_id
    )
    )
    where ct > &min_repeat_executions_filter
    and mxdelta > &min_elapsed_time
    )
    SELECT * FROM pivot_data
    PIVOT ( COUNT(*) FOR bucket IN (1,2,3,4,5))
    ORDER BY mx DESC,av DESC
    ;

  4. Vishal Desai
    | #3

    That was it.

    SQL_ID CT MX MN AV MAX_RUN_TIME LONGEST_SQL_EXEC_ID 1 2 3 4 5
    ————- —— ———- —- ——– ——————————– ——————– —— —— —– —- —
    2ahhqkpm9ywfc 173 6010 29 532.0 13-08-20 01:02:41 13-08-20 02:42 16777216_2456525 161 9 0 2 1
    :51

    Thanks for quick response.

  5. raj
    | #4

    Hi kyle , How do you interpret histogram buckets ? in your example the sqlid 8rua4c9agcqkb has 978 executions and the max elapsed time for that query is 820 seconds and in histogram
    We have 5 buckets and the query ran 830 times <= second and 2 times out of 978 runs ran in 5a seconds. ??

    SQL_ID CT MX MN AV MAX_RUN_TIME 1 2 3 4 5
    ————- —— ———- —- ——– ———————————– —— —— —– —- —
    8rua4c9agcqkb 978 820 0 72.7 11-03-01 23:13:50 11-03-01 23:13:56 830 116 21 9 2

    Thanks
    Raj

  6. khailey
    | #5

    The histogram buckets 1-5 simply divide the max time into 5 intervals.
    Your max time was 820, so your intervals each of a width of 820/5 = 164
    bucket 1 : 0 -164 with 830 executions
    bucket 2: 165- 328 with 115 executions
    bucket 3: 329 – 492 with 21 executions
    bucket 4: 493- 656 with 9 executions
    bucket 5: 657 – 820 with 2 executions (one of which is the 820 second one)

  7. raj
    | #6

    Thanks kyle for quick response

  8. Sal
    | #7

    Hi Kyle :

    While this looks good to get the count, max, min time for a query ID.

    Is there any way of knowing start time and end time of a particular sql_id :

    For example taking your query output / results :

    SQL_ID COUNT(*) MN AV MX MAX_RUN_TIME
    ————- ———- ——– ——– ——– ———————————–
    155vjqzjqp58f 27 0 115 786 11-04-11 07:39:47 11-04-11 07:41:20

    So :
    1) Can i know the start and end times of this SQL_ID which shows as run 27 times.
    2) Obviously along with this, other information like I/O , rows-fetched, cpu time, and also the cost.

  9. khailey
    | #8

    @Sai: in your example the query has been run 27 times. You could output the start and end for all 27 but that would be a lot of output. The last query above gives the start and end for the longest which is the one I generally find of the most interest.
    You could of course add the I/O, CPU and such for each execution. I haven’t looked into it, but I imagine you could also add the rows fetched and the cost as well. Seems do-able.

  10. Antony
    | #9

    Hi Kyle,
    I am getting count(no.of executions) mismatches.
    SQL> select sum(count(*)) from DBA_HIST_ACTIVE_SESS_HISTORY where sql_id=’0aj463w5jz8bw’ group by sql_id,sql_exec_id;

    SUM(COUNT(*))
    ————-
    79402

    below shows only 4868. I used where ct > &min_repeat_executions_filter (1)
    and mxdelta > &min_elapsed_time (0)

    SQL_ID CT MX MN AV MAX_RUN_TIME LONGEST_SQ 1 2 3 4 5
    ————- —— ——– —- ——– ——————————————————————————————————————————————————————————————————————————————————————– ———- —— —— —– —- —
    0aj463w5jz8bw 4868 2865 0 156.0 14-12-09 09:26:40 14-12-09 10:14:25 16795025 4475 326 62 0 5

  11. khailey
    | #10

    @anthony
    If you want to send me an export of your DBA_HIST_ACTIVE_SESS_HISTORY I’ll take a look at it. Your second query is slightly off, though not sure if that could explain the difference.

  12. Antony
    | #11

    SQL> USED v$active_session_history in your query,it shows execution count as 7 which is right.

    SQL_ID COUNT(*) MN AV MX MAX_RUN_TIME
    ————- ———- ——– ——– ——– ——————————————-
    1gqww8makf6w5 7 2 4 6 14-12-12 13:06:39 14-12-12 13:06:45

    — again with DBA_HIST_ACTIVE_SESS_HISTORY in your query, the execution count shows 2

    SQL_ID COUNT(*) MN AV MX MAX_RUN_TIME
    ————- ———- ——– ——– ——– ——————————————-
    1gqww8makf6w5 2 5 6 6 14-12-12 13:05:44 14-12-12 13:05:50

    SQL> @sqlstat 1gqww8makf6w5 from DBA_HIST_SQLSTAT shows 7 executions (4 and 3 in two snapshot intervals)

    INTERVAL SQL_ID PLAN_HASH_VALUE EXECUTIONS ELAPSED_SEC ELAPSED_PER_EXEC_SEC
    ——————– ————- ————— ———- ———– ——————–
    12-12-2014 12:14 1gqww8makf6w5 3724264953 4 9 2
    12-12-2014 13:00 1gqww8makf6w5 3724264953 3 17 6

    Correct me, if i am wrong. Your query’s execution count is not matching with the actual number of executions.

  13. Antony
    | #12

    @khailey
    Could you please delete the contents dbname & hostname in the SQL prompt from comment# 11 as it has sensitive info? sorry for the inconvenience.

  14. Antony
    | #13

    @khailey
    SQL> select sum(count(*)) from DBA_HIST_ACTIVE_SESS_HISTORY where sql_id=’0aj463w5jz8bw’ and sql_exec_id is not null group by sql_id,sql_exec_start,sql_exec_id;

    SUM(COUNT(*))
    ————-
    80144

    SQL_ID CT MX MN AV MAX_RUN_TIME LONGEST_SQ 1 2 3 4 5
    ————- —— ———- —- ——– ——————————————————————————————————————————————————————————————————————————————————————– ———- —— —— —– —- —
    0aj463w5jz8bw 4906 2865 0 156.0 14-12-09 09:26:40 14-12-09 10:14:25 16795025 4511 328 62 0 5

    Still there is a difference.

  15. antony
    | #14

    Hi Kyle,
    I guess the algorithm behind flushing 1/10 of the sample to historical tables could be the root cause as why there are differences in the number of executions.A simple test reveals that not all distinct SQL_EXEC_IDs are flushed out to AWR tables.

    SQL> select distinct sql_exec_id from V$ACTIVE_SESSION_HISTORY where sql_id=’1gqww8makf6w5′ order by sql_exec_id; –> Actual number of executions

    SQL_EXEC_ID
    ———–
    16777216
    16777217
    16777218
    16777219
    16777220
    16777221
    16777222
    16777223
    16777224

    SQL> select distinct sql_exec_id from DBA_HIST_ACTIVE_SESS_HISTORY where sql_id=’1gqww8makf6w5′ order by sql_exec_id;

    SQL_EXEC_ID
    ———–
    16777220
    16777221
    16777223
    16777224

    I have also observed that the flushing algorithm is not giving weightage to number of samples specific to a sql execution.In my test,as you can see below both sql_exec_ids 16777222 and 16777224 have 5 samples each in ASH.But 16777222 is missing from AWR.

    SQL> select sql_exec_id,count(*) from V$ACTIVE_SESSION_HISTORY where sql_id=’1gqww8makf6w5′ group by sql_exec_id;

    SQL_EXEC_ID COUNT(*)
    ———– ———-
    16777222 5 <<<
    16777221 6
    16777223 6
    16777220 6
    16777217 3
    16777224 5 <<<
    16777219 2
    16777218 3
    16777216 3

    But your thought process deserves more credit.Keep up the good work that you're doing.

    Thanks
    Antony

  16. khailey
    | #15

    yes, v$active_session_history and dba_hist_active_sess_history are different
    but in your comparison you are using dba_hist_active_sess_history for both so the results should be the same
    again you can send me an export of dba_hist_active_sess_history and I will look at it.
    Comparing on my system they are eactly the same

  17. Antony
    | #16

    Hi Kyle,
    I sent you (GMAIL) my dba_hist_active_session history for one SQL_ID.The file will have insert statments to a table called DASH.
    Thanks again for checking this one.

  18. khailey
    | #17

    @Antony,

    I think what you want is

    select count(distinct sql_exec_id||sql_exec_start) from DASH where sql_id=’0aj463w5jz8bw’;

    to get the number of distinct executions for a particular sql_id;

    COUNT(DISTINCTSQL_EXEC_ID||SQL_EXEC_START)
    ——————————————
    5105

    compares to

    SQL_ID CT MX MN AV MAX_RUN_TIME LONGEST_SQL_EXEC_ID 1 2 3 4 5
    ————- —— ———- —- ——– ———————————– ——————– —— —— —– —- —
    0aj463w5jz8bw 5105 85420 856 31997.0 14-10-24 00.00.00 14-10-24 23.43.40 16780545_2456955 1691 1312 1094 575 ###

  19. Antony
    | #18

    Thanks Kyle!
    Most of the variations in sql execution run time caused by change in execution plan or due to bind variable peeking.looking for the possibilities of drilling down further with a bind values associated with long run.

  20. khailey
    | #19

    @anthony – yes adding bind variable capturing would be nice but I don’t think there is a efficient way to capture all the bind variables. AFAIK, other than tracing, one can only capture a some of the bind variables.

  21. antony
    | #20

    I am amazed with your thought process of adding buckets in this sql. Another observation which I came across today while using the SQL is that there are SQLs which might not be completed for ever or killed after n minutes of executions(we have one in our shop for SQL queries from sql developer) but still contributed towards max_run_time.I had to compare the sql_id with executions_delta of DBA_HIST_SQLSTAT by filtering executions_delta>0.


9 × six =